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A theory of chiral lipid membranes is proposed on the basis of a concise free energy density which includes
the contributions of the bending and the surface tension of membranes, as well as the chirality and orientational
variation of tilting molecules. This theory is consistent with the previous experiments �J.M. Schnur et al.,
Science 264, 945 �1994�; M.S. Spector et al., Langmuir 14, 3493 �1998�; Y. Zhao, et al., Proc. Natl. Acad. Sci.
USA 102, 7438 �2005�� on self-assembled chiral lipid membranes of DC8,9PC. A torus with the ratio between
its two generated radii larger than �2 is predicted from the Euler-Lagrange equations. It is found that tubules
with helically modulated tilting state are not admitted by the Euler-Lagrange equations and that they are less
energetically favorable than helical ripples in tubules. The pitch angles of helical ripples are theoretically
estimated to be about 0° and 35°, which are close to the most frequent values 5° and 28° observed in the
experiment �N. Mahajan et al., Langmuir 22, 1973 �2006��. Additionally, the present theory can explain
twisted ribbons of achiral cationic amphiphiles interacting with chiral tartrate counterions. The ratio between
the width and pitch of twisted ribbons is predicted to be proportional to the relative concentration difference of
left- and right-handed enantiomers in the low relative concentration difference region, which is in good
agreement with the experiment �R. Oda et al., Nature �London� 399, 566 �1999��.
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I. INTRODUCTION

Since tubules were fabricated successfully from chiral
lipid molecules, chiral lipid structures have attracted much
experimental attention �1–10�. Most of chiral structures in
experiments are self-assembled from DC8,9PC which is a
typical chiral molecule. Schnur et al. have observed that the
spherical vesicles in solution have very weak circular dichro-
ism signal while tubules have strong one �2�. Spector et al.
have investigated the chiral lipid tubules formed from vari-
ous proportions of left- and right-handed DC8,9PC molecules
and found that they are of similar radii �3�, which reveals that
the radii of chiral tubules do not depend on the strength of
the molecular chirality. Fang’s group has carefully resolved
the molecular tilting order in the tubules and concluded that
the projected direction of the molecules on the tubular sur-
faces departs 45° from the equator of the tubules at the uni-
form tilting state �4�. Helical ripples in lipid tubules are also
observed by the same group with atomic force microscopy
�5�. Their pitch angles are found to be concentrated on about
5° and 28° �5�. Cholesterol is another kind of chiral mol-
ecules used in the experiments where helical stripes with
pitch angles 11� and 54� are usually observed �7,8�. Addition-
ally, Oda et al. have reported twisted ribbons of achiral cat-
ionic amphiphiles interacting with chiral tartrate counterions
�9,10�. It is found that the twisted ribbons can be tuned by
the introduction of opposite-handed chiral counterions in
various proportions �9�. From the experimental data �9�, we
see that the ratio between the width and pitch of the ribbons
is proportional to the relative concentration difference of left-
and right-handed enantiomers in the low relative concentra-
tion difference region. Can we interpret all or at least most of
above experimental results within a unified theory?

There are several theoretical discussions on chiral lipid
membranes �CLMs� in the previous literature, where the chi-
ral molecules are assumed to be in a smectic-C* phase at

which the direction of the molecules is tilted from the normal
of the membranes at a constant angle. The possible free en-
ergy of CLMs is discussed by Helfrich and Prost from sym-
metry arguments �11�. Their theory has been further devel-
oped and applied in many studies �12–18�. Nelson and
Powers have investigated the thermal fluctuations of CLMs
�13�. Selinger et al. have discussed tubules with helically
modulated tilting state and helical ripples in tubules �14–16�.
Komura and Ou-Yang have given an explanation to the high-
pitch helical stripes of cholesterol molecules �17�. Due to the
complicated form of the free energy used in these theories
�11–17�, it is almost impossible to obtain the general Euler-
Lagrange equations corresponding to the free energy. Thus
one cannot determine whether a configuration, such as a
twisted ribbon, a tubule with helically modulated tilting state
or a helical stripe, is a true equilibrium structure or not. This
difficulty was always ignored in previous discussion of both
tubules with helically modulated tilting state and helical
stripes �14–17�. Can we confront this difficulty and construct
a more concise theory of CLMs consistent with the experi-
ments, in which we can unambiguously say which configu-
ration is a genuine equilibrium structure?

We will address these questions in this paper, which is
organized as follows: In Sec. II, we introduce a concise free
energy density of CLMs which includes the contributions of
the bending and the surface tension of the membranes, as
well as the chirality and orientational variation of the tilting
molecules. In Sec. III, we present the Euler-Lagrange equa-
tions for CLMs without free edges and use them to explain
experimental data �2–5�. We predict a torus with the ratio
between its two generated radii larger than �2, which has not
yet been observed in the experiments on self-assembled
CLMs. In Sec. IV, we present the Euler-Lagrange equations
and boundary conditions for CLMs with free edges and use
them to discuss experimental data �7–9�. Section V is a brief
summary and discussion. In the Appendixes, we briefly de-
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rive the Euler-Lagrange equations for CLMs without free
edges and the Euler-Lagrange equations as well as boundary
conditions for CLMs with free edges through the variational
method �19� developed by one of the present authors. Sev-
eral mathematical details are also put in the Appendixes.

II. FREE ENERGY DENSITY

Following the above theories �11–17�, we adopt a concise
form of free energy density for a CLM which consists of the
following contributions.

�i� The bending and surface energy per area is taken as
Helfrich’s form �20�

GH = �kc/2��2H + c0�2 − k̄K + � , �1�

where kc and k̄ are bending rigidities and � the surface ten-
sion. c0 is the spontaneous curvature reflecting the asym-
metrical factors between two sides of the membrane. H and
K are the mean curvature and Gaussian curvature of the
membrane, respectively, which can be expressed as
2H=−�1/R1+1/R2�, K=1/R1R2 by the two principal curva-
ture radii R1 and R2. The curvature energy in Eq. �1� is in-
variant under the coordinate rotation around the normal of
the membrane surface, but will change under the inversion of
the normal if c0�0.

�ii� The energy per area originating from the chirality of
tilting molecules has the form �12�

Gch = − h�m, �2�

where h reflects the strength of the molecular chirality which
usually determines the handedness of CLMs—the CLMs
with the opposite handedness will be observed in experi-
ments if h changes its sign �2�. Without losing the generality,
we only discuss the case of h�0 in this paper. �m is the
geodesic torsion along the unit vector m at some point. Here
m represents the projected direction of the lipid molecules in
the experiments �2–8� and chiral tartrate counterions in the
experiment �9,10� on the membrane surface, respectively. If
we take a right-handed orthonormal frame �e1 ,e2 ,e3� with e3

being the normal vector of the membrane as shown in Fig. 1,
m can be expressed as m=cos �e1+sin �e2, where � is the
angle between m and e1. At this frame, the curvature tensor
can be expressed as a matrix with element a, b, and c shown

in Appendix A. With the curvature tensor, the geodesic tor-
sion along m can be expressed as �19�

�m = b�cos2� − sin2�� + �c − a�cos � sin � , �3�

which is the same as the chiral term in the previous literature,
such as the last term of Eq. �2� in Ref. �11�, Eq. �3� in Ref.
�13�, and the third term of Eq. �2.1� in Ref. �15�. In particu-
lar, for the principal frame, the above equation is simplified
as

�m = �1/R1 − 1/R2�cos � sin � . �4�

We will confine � to the region �−� /2 ,� /2� because of the
relation �m��+��=�m���. Moreover, it is easy to see that the
geodesic torsion along the mirror image of m with respect to
e1 changes its sign because ��−� under the reflection with
respect to e1. Thus this term breaks the inversion symmetry
in the tangent plane at each point of the membrane, which
allows us to distinguish the handedness. Additionally, from
Eq. �4� we can see that the minimum of Eq. �2�,

Gch
min = − �h/2��1/R1 − 1/R2� , �5�

is reached when m departs from the principal direction at a
angle +� /4 or −� /4 for a given shape of the membrane.
Here the sign in front of � /4 depends on the sign of �1/R1

−1/R2�. The larger difference between R1 and R2 is, the
larger absolute value of Gch

min is reached. In other words, the
chiral term favors saddle surfaces �for example, the twisted
ribbons in Sec. IV C� whose two principal curvature radii R1
and R2 have opposite signs.

�iii� The energy per area due to the orientational variation
of m is taken as �21�

Gov = �kf/2���� � m�2 + �� · m�2� , �6�

where kf is a constant in the dimension of energy. This is the
simplest term of energy cost due to tilting order invariant
under the coordinate rotation around the normal of the mem-
brane surface. � is the two-dimensional �2D� gradient opera-
tor on the membrane surface, and the 2D cross product “�”
gives a scalar. By defining a spin connection field S satisfy-
ing ��S=K �22�, one can derive

�� � m�2 + �� · m�2 = ��� − S�2 �7�

through simple calculations.
The total free energy density adopted in the present paper,

G=GH+Gch+Gov, has the following concise form:

G =
kc

2
�2H + c0�2 − k̄K + � − h�m +

kf

2
v2, �8�

where v	��−S. This special form might arguably be the
most natural and concise construction including the bending,
chirality and tilting order, for the given vector field m and
normal vector field e3. Of course, using these two fields, one
can also construct more general free energy densities which
contain much more terms �11–17�. Compared with the gen-
eral form, our special form is simplified in two aspects: �i�
The contributions of the bending of membranes and the ori-
entational elasticity of m are taken as the isotropic forms; �ii�
There is no additional coupling between m and the curvature
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FIG. 1. Right-handed orthonormal frame �e1 ,e2 ,e3� at any point
in a surface where e3 is the normal vector of the surface. �a� Surface
without boundary curve. �b� Surface with boundary curve where t is
the tangent vector of the boundary curve and b, in the tangent plane
of the surface, is perpendicular to t.

Z. C. TU AND U. SEIFERT PHYSICAL REVIEW E 76, 031603 �2007�

031603-2



of membranes except the chiral term �2�, which makes it a
concise theory. Although our free energy density is not new
relative to the general form appearing in the previous litera-
ture, we derive for the first time the corresponding Euler-
Lagrange equations without any assumption on the shapes of
membranes before doing the variation, and then check which
configuration solves the Euler-Lagrange equations. More im-
portantly, in the following, we will see that most of the ex-
perimental results can be explained in terms of such a con-
cise free energy density.

III. CHIRAL LIPID MEMBRANES WITHOUT FREE
EDGES

CLMs without free edges usually correspond to closed
vesicles. Here a long enough tubule, where the end effect is
neglected, is also regarded as a CLM without free edges. In
this section, we show the Euler-Lagrange equations of CLMs
without free edges �derived briefly in Appendix B�, and then
discuss CLMs in spherical, tubular, and torus shapes. As we
will see, our theoretical results are in good agreement with
the experiments �2–5�.

A. Euler-Lagrange equations

The free energy for a closed CLM can be expressed as

F =
 G dA + P
 dV , �9�

where dA is the area element of the membrane and dV the
volume element enclosed by the vesicle. P is either the pres-
sure difference between the outer and inner sides of the
vesicle or used to implement a volume constraint. For tubu-
lar configuration, we usually take P=0.

Using the variational method �19�, we obtain the Euler-
Lagrange equations corresponding to the free energy �9� as

2h�	m − H� − kf�
2� = 0 �10�

and

2kc�
2H + kc�2H + c0��2H2 − c0H − 2K� − 2�H + P

+ h�� · �m� � m� + � � �m� · m��

+ kf��	v − H�v2 − �v:�e3� = 0, �11�

where 	m and 	v are the normal curvature along the direc-
tions of m and v, respectively. They can be expressed as Eqs.
�A6� and �A7� with the curvature tensor. Physically, Eqs.
�10� and �11� express the moment and force balances along
the normal e3 at each point of the membrane. If h and kf
vanish, the above two equations degenerate into the shape
equation of achiral lipid vesicles, which has been fully dis-
cussed in Refs. �23–27�.

Two remarks are necessary concerning Eq. �10�: �i� We
have selected the proper gauge such that � ·S=0, or else �2�
should be replaced with �2�−� ·S. �ii� For closed vesicles
different from toroidal topology, the tangent vector field m
will have singular points. In this case, the right-hand term
should be replaced with the sum of the 
 function,
�i�i
�r−ri�, where r and ri represent any point and singular

point in the CLM, while �i represents the strength of the
source or vortex at the singular point ri.

B. Spherical vesicles

For spherical vesicles of chiral lipid molecules, �m is al-
ways vanishing because R1=R2. Thus the free energy �9� is
independent of the molecular chirality and permits the same
probability of left- and right-handed spherical vesicles exist-
ing in solution. Naturally, no evident circular dichroism sig-
nal would be observed, which is consistent with the experi-
ment �2�. Of course, we cannot exclude the other possible
explanation of this experiment that the lipid molecules are
non-tilting in the spherical vesicles �16�.

C. Tubules with uniform tilting state

A tubule is regarded as an cylinder with radius � and
infinite length. Then H=−1/2�, 	m=−cos2� /�, and �m
=sin 2� /2�, where � is the angle between m and the equator
of the cylinder. � is a constant for the tubule with the uni-
form tilting state as shown in Fig. 2�a�. Thus Eq. �10�
requires

� = ± �/4. �12�

We should keep �=� /4 because it corresponds to the local
minimum of −h��mdA, which is in good agreement with the
experiment by Fang’s group �4� where the projected direc-
tion of the molecules on the tubular surfaces indeed depart-
ing 45° from the equator of the tubules with the uniform
tilting state.

For the cylindrical shape, we set P=0. It is easy to find
� · �m��m�+�� �m� ·m� and �	v−H�v2−�v :�e3 both
to be vanishing for �=� /4. Thus Eq. �11� is transformed
into

kc�c0
2�2 − 1� + 2��2 = 0. �13�

This equation indicates that the radius � of chiral lipid tu-
bules is independent of the strength of molecular chirality h,

�

(a) (b)

FIG. 2. Tubules: �a� Uniform tilting state; �b� helically modu-
lated tilting state. Arrows represent the projected directions �m� of
the tilting molecules on the tubules.
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which is consistent with the experiment �3� where the tubular
radius is insensitive to the proportion of left- and right-
handed DC8,9PC in the tubule. However, we cannot exclude
the other possible explanation that DC8,9PC molecules with
different handedness are not mixed in the tubule such that
each tubule in solution contains merely the one kind of mol-
ecules with the same handedness either left- or right-handed
�3,16�.

D. Tubules with helically modulated tilting state

The concept of tubules with helically modulated tilting
state was proposed by Selinger et al. �15�. The orientational
variation of the tilting molecules is assumed to be linear and
confined to a small range. Here we will directly investigate
the orientational variation by using the Euler-Lagrange equa-
tion �10� without this assumption. Additionally, as mentioned
in the Introduction, whether the tubules with helically modu-
lated titling state are equilibrium configurations or not is not
addressed in Ref. �15�. However, our theory will unambigu-
ously reveal that they are not equilibrium configurations. Let
s and z denote the arc length parameters along the circum-
ferential and axial directions, respectively. If �, the angle
between m and the equator of the cylinder, is not a constant,
Eqs. �10� and �11� are then transformed into

kf��ss + �zz� + �h/��cos 2� = 0 �14�

and

h�2��z
2 − �s

2 + �sz�sin 2� + ��ss − �zz + 4�z�s�cos 2�� + �/�

+ kc�c0
2 − 1/�2�/2� + kf���z

2 − �s
2�/2� + �sz/�� = 0, �15�

where the subscripts s and z represent the partial derivatives
respect to s and z, respectively. The derivations of the above
two equations are shown in Appendix D.

At the helically modulated tilting state, � is invariant
along the direction of a fictitious helix enwinding around the
tubule as shown in Fig. 2�b�. Let  be the pitch angle of that
helix and apply a coordinate transformation �s ,z�→ �� ,��
via �=s cos +z sin  ,�=−s sin+z cos, where � is the
coordinate along the helix and � is the coordinate orthogonal
to �. In the new coordinates, � depends only on �. Changing
variable �=�− and introducing the dimensionless param-

eters �=� /� and h̄=h� /kf, we transform Eqs. �10� and �11�,
respectively, into

��� = − h̄ cos 2�� + � �16�

and

�kc/kf��1 − c0
2�2� − 2��2/kf = R , �17�

where

R 	 ��
2 cos 2 − ��� sin 2 + 2h̄

��2��
2 sin 2� − ��� cos 2�� .

The first integral of Eq. �16� is

��
2 = �2 − h̄ sin 2�� + � , �18�

with an unknown constant �. Substituting Eqs. �16� and �18�
into Eq. �17�, we obtain the right-hand side of Eq. �17�:

R = �2 cos 2 + h̄�4�2 − 1�sin 2� + 2h̄2�cos�4� + 2�

− sin 2� sin 2�� + �� . �19�

The necessary condition for validity of Eq. �17� is that the
right-hand side R is constant, which, in terms of Eq. �19�,
holds if and only if h̄=0 for varying �. Therefore, tubules
with helically modulated tilting state are not admitted by the
Euler-Lagrange equation �11� if h�0. In other words, the
orientational variation of the tilting lipid molecules breaks
the force balance along the normal direction of the tubule at
this state, which might rather induce helical ripples in tu-
bules.

E. Helical ripples in tubules

Assume now that a tubule with radius � undergoes small
out-of-plane deformations and reaches a new configuration
expressed as a vector ���1+y�cos�s /�� ,��1+y�sin�s /�� ,z�,
where �y � �1 is a function of s and z. For simplicity, we take

c0=0, �=0, kf kc, and h̄�1 in this subsection. As shown
in Appendix E, Eqs. �10� and �11� can be transformed into

�2��ss + �zz + �zyz − �sys − 2y�ss − yzs� = − h̄ cos 2�

�20�

and

�kc/kf�
2���1 + �2�ss + �2�zz�2y − 1/2� + �kc/kf�

2���1 + �2�ss

+ �2�zz�y/2 − 2�2yzz� + h̄�2��z
2 − �s

2 + �sz�sin 2� + ��ss

− �zz + 4�z�s�cos 2�� + ��s
2 − �z

2��y + �2yss − �2yzz

− 1�/2 + �sz + y�s
2 − 2y�sz − yzz + 2�2ysz�s�z = 0, �21�

where � is the angle between m and the equator of the tu-
bule.

Now we consider helical ripples in the tubule where �
and y are invariant along the direction of a fictitious helix
enwinding around the tubule as shown in Fig. 3. We adopt
the same coordinate transformation as the above subsection,
and let �=�− ��+�, where  is the pitch angle of the
fictitious helix and � is governed by Eq. �16�. Then the
above equations �20� and �21� are reduced to a matrix equa-
tion

L� = � , �22�

with �	�� ,y�t and �	�0, �h̄ /2��1−4�2�sin 2��t, where
the superscript “t” represents the transpose. The differential
operator L has four matrix elements:

L11 	 − d2/d�2,

L12 	 − � cos 2d/d� − sin  cos d2/d�2,

L21 	 � cos 2d/d� − sin  cos d2/d�2,
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L22 	 �2 cos2 + �2 cos 2d4/d�4 + �2�2 cos 2 sin2

+ ��2 − 1�cos2�d2/d�2,

where � satisfies

�2 cos 2 = kc/kf . �23�

It is not hard to find a special solution of Eq. �22� as

�̃ =
h̄�1 − 4�2�

4�
�cos 2�� + �

2 sin 2�
� �24�

with �	�2�3 cos2+cos 2−8�2 cos 2 sin2−4�2 cos2
+16�4 cos 2�. Considering Eq. �23�, we can prove ��0
for kc /kf�0.133 and hence ��0 for kckf.

Note that Eq. �22� contains only the first order terms of �
and y, which can also be obtained from the variation of the
free energy F expanded up to the second order terms of �
and y. The dimensionless mean energy difference between
the tubule with helical ripples and that with helically modu-
lated tilting state is expressed as

�F = 

0

W/� �1

2
�tL� − �t��d� , �25�

where W is the period of the ripples along � direction as
show in Fig. 3. Substituting the solution �24� into the above
equation, we have

�F = −
h̄2�1 − 4�2�2

8�



0

W/�

sin22�d� � 0, �26�

which reveals that a tubule with ripples is energetically more
favorable than that in a helically modulated titling state. Ad-
ditionally, we can easily prove from Eq. �23� that the pitch
angle obeys �45°. All ripples in tubules resolved in the
recent experiment �5� with atomic force microscope have
indeed the pitch angles smaller than 45°. The tubules with

“helically modulated tilting state” observed in the experi-
ment �28� might also be the tubules with helical ripples
whose amplitudes are below the experimental resolution. In
this experiment, all pitch angles are also smaller than 45°.

Considering h̄�1, we have ���� from Eq. �18� and
then

�W/� � 2� , �27�

due to W being the period of the ripples along � direction. If
the pitch angle =0, the fictitious helix is a circle, and Eqs.
�23� and �27� requires 2�� /W��kc /kf. If �0, the ficti-
tious helix is indeed a helix satisfying W=2�� sin . It is
then easy to derive

cos 2/sin2 � kc/kf �28�

from Eqs. �23� and �27�. Therefore, two kinds of ripples are
permitted in our theory: One has pitch angle about 0°; an-
other satisfies Eq. �28�, which gives 35° for kckf. Our
theoretical results are thus close to the most frequent pitch
angles �about 5° and 28°� of the ripples in tubules observed
by Fang’s group �5�.

F. Torus, a prediction

A torus is a revolution surface generated by a cycle with
radius � rotating around an axis in the same plane of the
cycle as shown in Fig. 4�a�. The revolution radius r should
be larger than �. A point in the torus can be expressed as a
vector ��r+� cos ��cos � , �r+� cos ��sin � ,� sin ��. As
shown in Appendix F, Eq. �10� is transformed into

���
� + cos �

+ ��� + cos ������ −
�h�

kf
cos 2� = 0, �29�

where � is the angle between m and the latitude of the torus,
while

�2

W

FIG. 3. Small amplitude ripples in a tubule with radius �. Ar-
rows represent the projected directions �m� of the tilting molecules
on the ripples’ surface.

r

�

(a)

0 1

�

k /kf c

2

(b)

FIG. 4. �a� Torus generated by a cycle rotating around an axis in
the same plane of the cycle. �b� Ratio of the generated radii ���, Eq.
�31�, as a function of kc /kf.
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� 	 r/�

is the ratio between two generated radii of the torus.
It is found that the uniform tilting state �=−� /4 satisfies

the above equation �29� and that makes −�h�mdA to take the
minimum by considering Eq. �F12�. As shown in Appendix
F, with �=−� /4, Eq. �11� is transformed into

�2kc − kf�/�2 + kc�c0
2�2 − 1� + 2�P� + ���2

+
4kcc0

2�2 − 4kcc0� − 2h� + 8��2 + 6P�3

�
cos �

+
5kcc0

2�2 − 8kcc0� − 4h� + 10��2 + 3kf + 6P�3

�2 cos2�

+
2kcc0

2�2 − 4kcc0� − 2h� + 4��2 + 2kf + 2P�3

�3 cos3�=0.

�30�

If �→� and P=0, the above equation degenerates into Eq.
�13� obeyed by a tubule with radius � at uniform tilting state.
If � is finite, then Eq. �30� holds if and only if the coefficients
of �1,cos � , cos2 � , cos3 �� vanish. It follows that 2��2

=kc�4�c0−�2c0
2�−3kf +2h�, P�3=2kf −2kc�c0−h� and

� =�2 − kf/kc

1 − kf/kc
. �31�

The relation between �, the ratio of the generated radii r
and �, and kf /kc is sketched in Fig. 4�b�. The ratio � in-
creases with kf /kc. Especially, �=�2 for kf /kc=0, which
leads to the Willmore torus of nontilting lipid molecules
�29,30�. Since this kind of torus was observed in the experi-
ments �31–33�, tori with ���2 for 0�kf /kc�1 might also
be observed in some experiments on CLMs.

IV. CHIRAL LIPID MEMBRANES WITH FREE EDGES

In this section, we show the Euler-Lagrange equations and
boundary conditions of CLMs with free edges, and then dis-
cuss helical stripes and twisted ribbons. As we will see, our
theoretical result on twisted ribbons is consistent with the
experiment �9�.

A. Euler-Lagrange equations and boundary conditions

Consider a CLM with an free edge as shown in Fig. 1�b�.
Its free energy can be expressed as

F =
 G dA + �� ds , �32�

where dA is the area element of the membrane and ds the arc
length element of the edge. � represents the line tension of
the edge.

Using the variational method �19�, as shown in Appendix
C we obtain two Euler-Lagrange equations corresponding to
the free energy �32� as

2h�	m − H� − kf�
2� = 0 �33�

and

2kc�
2H + kc�2H + c0��2H2 − c0H − 2K� − 2�H

+ h�� · �m� � m� + � � �m� · m��

+ kf��	v − H�v2 − �v:�e3� = 0. �34�

Additionally, the boundary conditions obeyed by the free
edge are derived as

kfvb = 0, �35�

G + �	g = 0, �36�

kc�2H + c0� − k̄	n − �h/2�sin 2�̄ = 0, �37�

�	n − k̄�̇g − 2kcHb − h�vt + �̄˙ �sin 2�̄ + kf	nvt = 0, �38�

where 	n, �g, and 	g are the normal curvature, geodesic tor-
sion, and geodesic curvature of the boundary curve �i.e., the
edge�, respectively. b is in the tangent plane of the mem-
brane surface and perpendicular to t, the tangent vector of
the boundary curve, as shown in Fig. 1�b�. vb and vt are
components of v in the direction of b and t, respectively. Hb
is the direction derivative of H with respect to b. A dot
represents the derivative with respect to s. �̄ is the angle
between m and t at the boundary curve.

It should be noted that Eqs. �33� and �34� are equivalent to
Eqs. �10� and �11� with P=0. Equations �35�–�38� describe
the force and moment balance relations in the edge. Thus
they can also be used for a CLM with several edges. If h and
kf vanish, the above equations �33�–�38� degenerate into the
Euler-Lagrange equations and boundary conditions of open
achiral lipid bilayers, which were fully discussed in Refs.
�34–37�.

B. Helical stripes

A helical stripe with pitch T and radius � is shown in Fig.
5. In terms of the discussion in Sec. III D, we can immedi-

�2

T

FIG. 5. Helical stripe. Arrows represent the projected directions
�m� of the tilting molecules on the stripe’s surface.
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ately deduce that a helical stripe with modulated tilting state
is not permitted by the Euler-Lagrange equations �33� and
�34� because it can be thought of as a ribbon wound around
a fictitious cylinder. Thus here we only have to discuss heli-
cal stripes with a uniform tilting state, for which we easily
obtain

� = �/4, �39�

kc�c0
2�2 − 1� + 2��2 = 0, �40�

from the Euler-Lagrange equations. Here � is the angle be-
tween m and the equator of the fictitious cylinder.

In the free edge of the helical stripe, we have vb=vt=0,
H=−1/2�, �̄=� /4−, �m=−h /2�, 	g=0, 	n=−cos2 /�,
�g=sin 2 /2�, where 	T /2�� is the pitch angle of the
helical stripe. Thus the boundary condition �35� is trivial, and
Eqs. �36�–�38� can be transformed into

�kc/2��c0 − 1/��2 + � − h/2� = 0, �41�

kc�c0 − 1/�� + k̄ cos2/� − �h/2�cos 2 = 0, �42�

� cos2/� = 0. �43�

If ��0, there exists only a trivial solution =� /2 to the
above equations �40�–�43�. Thus our theory does not permit
genuine helical stripes with free edges with a uniform tilting
state.

C. Twisted ribbons

A twisted ribbon with pitch T and width W is shown in
Fig. 6, which can be expressed as a vector
�u cos � ,u sin � ,��� with �u ��W /2, �� ���, and �� �
=T /2�. As shown in Appendix G, Eq. �33� is transformed
into

kf��uu +
u�u + ���

u2 + �2 � +
2h� sin 2�

u2 + �2 = 0, �44�

where � is the angle between m and the horizontal.
If we only consider the uniform tilting state, the above

equation requires �=0 or � /2. It is easy to see that �=0
minimizes −h��mdA for ��0 while �=� /2 minimizes
−h��mdA for ��0 from Eq. �G12�.Thus we should take �
=0 for ��0 and �=� /2 for ��0.The former case corre-
sponds to Fig. 6�a� where m is perpendicular to the edges;
the latter corresponds to Fig. 6�b� where m is parallel to the
edges. As shown in Appendix G, both for �=0 and � /2, Eq.
�34� is transformed into

kcc0�
2/�u2 + �2�2 = 0, �45�

which requires c0=0 for nonvanishing �. Among the bound-
ary conditions �35�–�38�, only Eq. �36� is nontrivial, which
gives

��1 + x2��2 − �h − �x���� +
2k̄ + kfx

2

2�1 + x2�
= 0, �46�

with x	W /2 ���.
Guided by the experimental data �9�, we may assume h to

be proportional to Rd, the relative concentration difference of
the left- and right-handed enantiomers in the experiment, i.e.,
h=h0Rd with a constant h0. In terms of the experimental data,
�� � →� for Rd→0. Thus Eq. �46� requires �=0 and then

��� = �2k̄ + kfx
2�/2�h0Rd − �x��1 + x2� . �47�

To determine the relation between x and Rd, we minimize the
average energy per area with respect to ��� for given W. The
average energy per area is calculated as

F̄ =
�2k̄ − kf�x + �kf − 2h0Rd�����1 + x2arcsinh x + 2�����1 + x2�

�2�1 + x2�arcsinh x + x�1 + x2�
. �48�

W

T

(a) (b)

FIG. 6. Twisted ribbons: �a� m is perpendicular to the edges; �b�
m is parallel to the edges. Arrows represent the projected directions
�m� of the tilting molecules on the ribbons’ surface.
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Minimizing it with respect to ��� and using Eq. �47�, we
obtain

x =  Rd + O�Rd
3� , �49�

with  	3h0 /4�. This relation reveals that the ratio between
the width and pitch of the ribbons is proportional to the
relative concentration difference of left- and right-handed
enantiomers in the low relative concentration difference re-
gion. Equation �49� fits well with the experimental data with
parameter  =0.37 as shown in Fig. 7.

V. CONCLUSION AND DISCUSSION

In this paper, we have focused on a concise free energy
from which the Euler-Lagrange equations of CLMs without
free edges and Euler-Lagrange equations as well as boundary
conditions of CLMs with free edges can be derived analyti-
cally. Their implications for extant and future experiments
can be summarized as follows.

�i� Our theory predicts the same probability for left- and
right-handed spherical vesicles existing in solution. Thus no
evident circular dichroism signal should be observed, which
is consistent with the experiment �2�.

�ii� The radius of a tubule at uniform tilting state satisfies
Eq. �13�. It reveals that the radius is independent of molecu-
lar chirality, which is consistent with the experiment �3�
where the tubular radius is insensitive to the proportion of
left- and right-handed DC8,9PC in the tubule. We find that the
projected direction of the molecules on the tubular surface
departs 45° from the equator of the tubule with the uniform
tilting state, which is in good agreement with the experiment
�4�.

�iii� Tubules with helically modulated tilting state are not
admitted by the Euler-Lagrange equation �11� for nonvanish-
ing h. The orientational variation of the tilting lipid mol-
ecules breaks the force balance along the normal direction of
the tubule. Thus a tubule with helically modulated tilting
state is not an equilibrium structure within our theoretical
framework.

�iv� Helical ripples in tubules are equilibrium structures.
The pitch angle of helical ripples is estimated as about 0° and
35° for kf kc, which are close to the experimental values 5°
and 28° observed by Fang’s group �5�.

�v� Tori with a ratio of generated radii larger than �2 are
predicted by our theory, Eq. �31�, which have not yet been
observed in the experiments.

�vi� Helical stripes with free edges at either uniform tilt-
ing state or helical modulated tilting state are not possible
equilibrium configurations.

�vii� Twisted ribbons satisfy Euler-Lagrange equations
�33� and �34� and boundary conditions �35�–�38�. The ratio
between the width and pitch of the ribbons is proportional to
the relative concentration difference of left- and right-handed
enantiomers in the low relative concentration difference re-
gion, which is in good agreement with the experiment �9�.

Finally, we have to list a few open problems which should
be addressed in the future work.

�i� Within the present theory, we cannot give a simple
explanation for the experiments on CLMs of pure cholesterol

�7,8� where helical stripes with pitch angles 11° and 54° are
usually observed. It has recently been found that the choles-
terol helical stripes have good crystal structure �38�, which is
out of the range of our theory. There might be two possible
ramifications based on the present theory: One would be to
include anisotropic bending effects �39� in the free energy
density �8�; another one would be to consider a line tension �
depending on the angle between the directions of the tilting
and the free edges �40� in the free energy �32�.

�ii� We cannot yet interpret the twisted ribbon-to-tubule
transition with increasing the relative concentration differ-
ence of the left- and right-handed enantiomers reported in the
recent experiment by Oda’s group �41�. A possible reason is
that the parameters except h in our theory are independent of
the relative concentration difference �42�. Additionally, the
ribbons and tubules observed in this experiment are usually
multi-bilayer structures �42�. Then a decoupling effect
�43,44� between neighbor bilayers might occur. An extended
theory including these two factors might be required to in-
vestigate the mechanism responsible for the transition.

�iii� We have ignored the effect of singular points in
CLMs. Although the features of singular points in 2D planar
films or achiral nematic spherical, torus vesicles and other
manifolds have been fully investigated in previous literature
�40,45–48�, it remains a challenge to study the properties of
singular points in CLMs �49�.
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APPENDIX A: BRIEF INTRODUCTION TO MOVING
FRAME METHOD AND EXTERIOR DIFFERENTIAL

FORMS

If we take a frame �e1 ,e2 ,e3� at any point r on a surface
as shown in Fig. 1, then the infinitesimal tangential vector at
r is expressed as

FIG. 7. Relation between x=W /2 ��� and Rd. The solid line is
the fitting curve x=0.37Rd and the dots are the experimental data in
Ref. �9�.
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dr = !1e1 + !2e2 �A1�

and the difference of frame between points r+dr and r is
denoted as

dei = !ije j �i = 1,2,3� , �A2�

where !1, !2, and !ij =−! ji, �i , j=1,2 ,3� are one-forms
�19,50�. The repeated subscripts in Eq. �A2� and the follow-
ing contents represent the Einstein summation convention.
With these one-forms, the structure equations of a surface
can be expressed as �19,50�

d!1 = !12 ∧ !2,

d!2 = !21 ∧ !1,

d!ij = !ik ∧ !kj �i, j = 1,2,3� , �A3�

and

�!13

!23
� = �a b

b c
��!1

!2
� , �A4�

where the symbol “∧” expresses the wedge product between
differential forms and “d” is the exterior differential operator

�19,50�. The matrix �a b

b c � is called the curvature matrix

which is related to the mean and gaussian curvature by

2H = a + c, K = ac − b2. �A5�

For a unit vector m=cos �e1+sin �e2, the normal curva-
ture along the direction of m can be expressed as �19�

	m = a cos2� + 2b cos� sin � + c sin2� . �A6�

The normal curvature along the direction of an arbitrary vec-
tor v can be expressed as

	v = �av1
2 + 2bv1v2 + cv2

2�/v2, �A7�

where v1 and v2 are the components of v in the directions of
e1 and e2.

In our following derivations, several relations between
vector forms and differential forms are used frequently. For
convenience, we list them below:

�� � m�dA = d�m · dr� , �A8�

�� · m�dA = d��m · dr� , �A9�

�mdA = m · de3 ∧ m · dr , �A10�

	mdA = − m · de3 ∧ � m · dr , �A11�

�� · dr = d� , �A12�

��2��dA = d � d� , �A13�

S · dr = − !12, �A14�

�� · S�dA = − d � !12, �A15�

�� � S�dA = − d!12 = KdA , �A16�

v · dr = d� + !12, �A17�

v2dA = v · dr ∧ � v · dr , �A18�

��v:�e3�dA = d�v · de3� , �A19�

where dA=!1∧!2 is the area element. m is a unit vector and
� is the angle between m and e1. S is the spin connection
and v	��−S. � is the Hodge star operator �19,51� which
satisfies �!1=!2 and �!2=−!1.

Using Eqs. �A5�, �A7�, �A8�, �A9�, and �A17�, we can
prove

�	v − H�v2 = �v1
2 − v2

2��a − c�/2 + 2bv1v2 �A20�

and

�� · �m� � m� + � � �m� · m��dA

= d��v2 cos 2� − v1 sin 2��!1

+ �v1 cos 2� + v2 sin 2��!2� , �A21�

where v1 and v2 are the components of v in the directions of
e1 and e2.

We suggest the reader refer first to Ref. �19� and some
textbook on the calculus with the moving frame method be-
fore going on if he is interested in the mathematical details.
In writing the following contents we assume that the reader
has been familiar with the skill in Ref. �19� and good at
calculus with the moving frame method.

APPENDIX B:DERIVATION OF THE EULER-LAGRANGE
EQUATIONS OF CLMS WITHOUT FREE EDGES

Here the CLMS without free edges will be derived
through the variational method developed in Ref. �19� with
the aid of the moving frame method and exterior differential
forms, which can highly simplify the calculus of variation.

1. Variation respect to �

Assume 
�=". Through simple calculations, we arrive at


�m = 2�H − 	m�" �B1�

and


�v2dA� = 2d" ∧ � �d� + !12� . �B2�

Combining with the above two equations and using the inte-
gral by parts and Stokes’ theorem, we derive


F =
 �2h�	m − H� − kf�
2��"dA + kf � " � v · dr ,

�B3�

where the second term is the integral along the boundary
curve, which vanishes for CLMS without free edges. Since
" is an arbitrary function, from 
F=0 we derive Euler-
Lagrange equation �10�. We have used the assumption � ·S
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=0 when we write Eq. �B3�. This assumption is indeed sat-
isfied in our discussions on all configurations except ripples
in tubules. Thus �2� should be replaced with �2�−� ·S in
Eq. �B3� as well as Eq. �10� when this condition is not met.

2. Variation respect to the deformation of the surface

In this subsection, let us denote F0 as the functional �9�
with h and kf vanishing, and define the additional functional

Fad =
 � kf

2
v2 − h�m�dA . �B4�

Any small deformation of a CLM without free edges can
always be achieved from small normal displacement #3 at
each point r in the surface. That is, 
r=#3e3. The frame is
also changed because of the deformation of the surface,
which is denoted as


ei = #ije j �i = 1,2,3� , �B5�

where #ij =−# ji, �i , j=1,2 ,3� corresponds to the rotation of
the frame due to the deformation of the surface.

F0 was first dealt with in Ref. �12� which gives


F0 =
 �2kc�
2H − 2�H + P�#3dA +
 kc�2H + c0�

��2H2 − c0H − 2K�#3dA . �B6�

Following Ref. �19�, and considering Eqs. �A10�, �A17�,
and �A18�, through somewhat involved calculations, we can
derive


��mdA� = 2#12�H − 	m�dA + � · md#3 ∧ m · dr

+ m · dr ∧ d�d#3 ∧ � m · dr/dA� , �B7�


�v2dA� = 2d#12 ∧ � �d� + !12� + 2d#3 ∧ v · de3

+ 2�	v − H�v2#3dA . �B8�

Combining with the above two equations and using the inte-
gral by parts and Stokes’ theorem, we derive


Fad =
 h�� · �m� � m� + � � �m� · m��#3dA

+
 kf��	v − H�v2 − �v:�e3�#3dA , �B9�

Then the Euler-Lagrange equation �11� follows from 
F
=
F0+
Fad=0 because #3 is an arbitrary function.

APPENDIX C: DERIVATION OF THE EULER-LAGRANGE
EQUATIONS AND BOUNDARY CONDITIONS OF

CLMS WITH FREE EDGES

A CLM with an free edge can be described as a surface
with an boundary curve shown in Fig. 1�b�.

1. Variation respect to �

Let 
�=", we still have Eq. �B3� whose second term is
transformed into

− kf � vb"ds �C1�

with vb=v ·b. Thus from 
F=0 we can derive the Euler-
Lagrange equation �33� and boundary condition �35�.

2. Variation respect to the deformation of the surface

Because one can select an arbitrary frame �r ;e1 ,e2 ,e3�,
here we take it such that e1 and e2 align with t and b in the
boundary curve. Then any small deformation of a CLM with
an free edge can always be expressed as the linear superpo-
sition of small normal displacement #3 and tangent displace-
ment #2 along e2 at each point r in the surface.

First, we consider the in-plane deformation mode 
r
=#2e2. The change of the frame is still denoted as Eq. �B5�.
In terms of Ref. �35�, we have 
�ds=−�	g#2ds where 	g is
the geodesic curvature of the boundary curve. Additionally,
we can derive



 G dA = − � G#2ds . �C2�

Although the derivation of the above equation is somewhat
involved, its physical meaning is quite clear. Under the dis-
placement #2 along e2, G is similar to the surface tension
and the area element near the boundary decreases by #2ds.
Thus the variation of �G dA gives Eq. �C2� and then we
obtain the boundary condition �36� from 
F=0.

Second, we consider the out-of-plane deformation mode

r=#3e3. Let us denote F0 as the functional �32� with h and
kf vanishing, and define the additional functional as Eq. �B4�.

F0 is fully discussed in Ref. �35� as


F0 =
 �kc�2H + c0��2H2 − c0H − 2K� − 2�H�#3dA

+
 2kc��2H�#3dA − � �kc�2H + c0� − k̄	n�#23ds

− � �− 2kc � H/�b + �	n − k̄�̇g�#3ds . �C3�

Here the only difference is that the sign of k̄ adopted in the
present paper is opposite to that in Ref. �35�. Similar to the
derivation of Eq. �B9� from Eqs. �B7� and �B8� by using the
integral by parts and Stokes’ theorem, we have


Fad =
 h�� · �m� � m� + � � �m� · m��#3dA

+
 kf��	v − H�v2 − �v:�e3�#3dA + � �h�vt

+ �̇̄�sin 2�̄ − kf	nvt�#3ds + � �h/2�sin 2�̄#23ds ,

�C4�

where vt=v · t. In the above equations �C3� and �C4�, #3
represents the arbitrary small displacement of point on the
surface along e3 and #23 is the arbitrary small rotation of e3
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around t at the edge. Thus 
F=0 will give the Euler-
Lagrange equation �34� and boundary conditions �37� and
�38�.

APPENDIX D: DERIVATION OF EQUATIONS (14) and (15)
FOR TUBULES WITH NONUNIFORM TILTING

STATE IN SECTION III D

For a cylindrical surface, take a frame such that e1, e2, and
e3 are along the circumferential, axial, and radial directions,
respectively. Then we have

!1 = ds, !2 = dz �D1�

a = − 1/�, b = c = 0. �D2�

Thus

2H = a + c = − 1/�, K = ac − b2 = 0. �D3�

Because dds=0 and ddz=0, using the structure equation
�A3�, we have !12=0. Considering Eq. �A14�, we obtain the
spin connection

S = 0, �D4�

and then

v = �� = �se1 + �ze2. �D5�

From Eqs. �A6� and �A13�, we have

	m = − cos2 �/� , �D6�

�2� = �ss + �zz. �D7�

Substituting the above two equations and Eq. �D3� into the
Euler-Lagrange equation �10�, we can derive Eq. �14� in Sec.
III D.

Additionally, using Eqs. �A2�, �A4�, and �D5�, we derive

v · de3 = ��s/��ds . �D8�

From Eq. �A19� we can derive

�v:�e3 = − �sz/� . �D9�

In this derivation, one should note that dA=ds∧dz=
−dz∧ds. From Eqs. �A20�, �A21�, �D2�, and �D5�, we can
obtain

�	v − H�v2 = ��z
2 − �s

2�/2� , �D10�

and

� · �m� � m� + � � �m� · m� = 2 sin 2���z
2 − �s

2 + �sz�

+ cos 2���ss − �zz + 4�z�s� . �D11�

Substituting Eqs. �D3� and �D9�–�D11� into the Euler-
Lagrange equation �11�, we can obtain Eq. �15� in Sec. III D.

APPENDIX E: DERIVATION OF EQUATIONS (20) and (21)
FOR HELICAL RIPPLES IN SECTION III E

For the surface expressed as vector form

r = ���1 + y�cos�s/��,��1 + y�sin�s/��,z� �E1�

with �y � �1, the first and second fundamental forms of the
surface can be calculated as

I = �1 + 2y�ds2 + dz2, �E2�

II = −
1

�
�1 + y − �2yss�ds2 + 2�yszds dz + �yzzdz2 �E3�

up to the order of O�y�, respectively. The same order is kept
in the following expressions in this section. In terms of the
correspondence relations I=!1

2+!2
2 and II=a!1

2+2b!1!2
+!2

2, we have

!1 = �1 + y�ds, !2 = dz , �E4�

a = − �1 − y − �2yss�/�, b = �ysz, c = �yzz, �E5�

2H = − �1 − y − �2yss − �2yzz�/�, K = − yzz. �E6�

2H is a function of s and z, using �2�2H�dA=d�d�2H�, we
can derive

�2�2H� = �yss + yzz + �2yssss + 2�2yzzss + �2yzzzz�/� .

�E7�

Because d!1=yzdz∧ds and d!2=ddz=0, using the struc-
ture equation �A3�, we have !12=−yz!1. Considering Eqs.
�A14� and �A15�, we have

S = yze1, � · S = yzs. �E8�

Using Eqs. �A12� and �A13�, we obtain

�� = �s�1 − y�e1 + �ze2, �E9�

�2� = �ss + �zz + �zyz − �sys − 2y�ss, �E10�

and then

v = �� − S = ��s�1 − y� − yz�e1 + �ze2. �E11�

From Eqs. �A2�, �A4�, �A19�, �A20�, and �E11�, we can
derive

�v:�e3 = − �sz/� + �yz�s + 2y�sz + yzz�/� , �E12�

�	v − H�v2 = ��z
2 − �s

2�/2� + �s�y�s + yz�/� + 2�ysz�s�z

+ �y + �2yss − �2yzz���s
2 − �z

2�/2� . �E13�

Since we only consider the case of h̄�1, up to the order

O�h̄�, we obtain

h̄�	m − H� = − �h̄/2��cos 2� , �E14�

h̄�� · �m� � m� + � � �m� · m�� = h̄�2��z
2 − �s

2

+ �sz�sin 2� + ��ss − �zz + 4�z�s�cos 2�� �E15�

by using Eqs. �A6� and �D11�.
Substituting the above equations �E6�–�E15� into the

Euler-Lagrange equations �10� and �11�, we can derive the
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basic equations �20� and �21� under the assumption c0=0,
�=0, kf kc in Sec. III E.

APPENDIX F: DERIVATION OF EQUATIONS (29) and (30)
FOR TORI IN SECTION III F

A torus can be expressed as a vector form

r = ��r + � cos ��cos �,�r + � cos ��sin �,� sin �� �F1�

with r��. A frame �e1 ,e2 ,e3� is taken as

e1 = �− sin �,cos �,0� ,

e2 = �− sin � cos �,− sin � sin �,cos �� ,

e3 = �cos � cos �,sin � cos �,sin �� . �F2�

By using Eqs. �A1�, �F1�, and �F2�, we can derive

!1 = �r + � cos ��d�,!2 = � d� . �F3�

From Eq. �A2� and �F2�, we obtain

!12 = �sin �/�r + � cos ���!1, �F4�

!13 = − �cos �/�r + � cos ���!1, �F5�

!23 = − �1/��!2. �F6�

Considering Eqs. �A14�, �A15�, and �F4�, we have

S = − �sin �/�r + � cos ���e1, �F7�

� · S = 0. �F8�

Additionally, Eqs. �A4�, �F5�, and �F6� give

a = − cos �/�r + � cos ��,b = 0,c = − 1/� . �F9�

Thus by considering Eqs. �3�, �A5�, �A6�, and �A13�, we
obtain

2H = −
r + 2� cos �

��r + � cos ��
, K =

cos �

��r + � cos ��
, �F10�

	m = −
cos2 � cos �

r + � cos �
−

sin2 �

�
, �F11�

�m = −
r sin 2�

2��r + � cos ��
, �F12�

�2� =
���

�r + � cos ��2 +
���
�2 −

sin ���
��r + � cos ��

. �F13�

Substituting the above four equations into Eq. �10�, we can
derive Eq. �29� in Sec. III F.

If �=−� /4, then ��=0, and

v 	 �� − S = �sin �/�r + � cos ���e1, �F14�

v · de3 = v1!31 = �sin 2�/2�r + � cos ���d� , �F15�

where v1 is the component of v in the direction of e1. Thus
from Eq. �A19� we can derive

�v:�e3 = − �r cos 2� + � cos3 ��/��r + � cos ��3.

�F16�

Using Eqs. �A20�, �A21�, �F9�, and �F14�, we can obtain

�	v − H�v2 = r sin2 �/2��r + � cos ��3, �F17�

and

� · �m� � m� + � � �m� · m� = − cos �/��r + � cos �� .

�F18�

Additionally, from �2�2H�dA=d�d�2H�, we have

�2�2H� = r�r cos � + ��/�2�r + � cos ��3. �F19�

Substituting the above equations �F10� and �F16�–�F19�
into Eq. �11�, we can derive Eq. �30� in Sec. III F.

APPENDIX G: DERIVATION OF EQUATIONS (44)–(46) and
(48) FOR TWISTED RIBBONS IN SECTION IV C

A twisted ribbon can be expressed as a vector form

r = �u cos �,u sin �,��� . �G1�

A frame �e1 ,e2 ,e3� is taken as

e1 = �cos �,sin �,0� ,

e2 = �− u sin �,u cos �,��/�u2 + �2,

e3 = �� sin �,− � cos �,u�/�u2 + �2. �G2�

By using Eqs. �A1�, �G1�, and �G2�, we can derive

!1 = du, !2 = �u2 + �2d� . �G3�

From Eq. �A2� and �G2�, we obtain

!12 = �u/�u2 + �2��!2, �G4�

!13 = − ��/�u2 + �2��!2, �G5�

!23 = − ��/�u2 + �2��!1. �G6�

Considering Eqs. �A14�, �A15�, and �G4�, we have

S = − �u/�u2 + �2��e2, �G7�

� · S = 0. �G8�

Additionally, �A4�, �G5�, and �G6� give

a = c = 0, b = − �/�u2 + �2� . �G9�

Thus by considering Eqs. �3�, �A5�, �A6�, and �A13�, we
obtain

H = 0, K = − �2/�u2 + �2�2, �G10�

	m = − � sin 2�/�u2 + �2� , �G11�

�m = − � cos 2�/�u2 + �2� , �G12�
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�2� = �uu + �u�u + ����/�u2 + �2� . �G13�

Substituting the above four equations into Eq. �33�, we can
derive Eq. �44� in Sec. IV C.

If �=0 or � /2, then ��=0, and

v 	 �� − S = �u/�u2 + �2��e2, �G14�

v · de3 = v2!32 = �u�/�u2 + �2�2�du , �G15�

where v2 is the component of v in the direction of e2. Thus
from Eq. �A19� we can derive

�v:�e3 = 0. �G16�

Considering sin 2�=0 and cos 2�= ±1, from Eqs. �A20�,
�A21�, �G9�, and �G14�, we can obtain

�	v − H�v2 = 0, �G17�

� · �m� � m� + � � �m� · m� = 0. �G18�

Substituting the above equations �G10� and �G16�–�G18�,
we can derive Eq. �45� in Sec. IV C.

Now let us turn to the boundary conditions. If �=0 for
��0, we have �̄= ±� /2. At the boundary, t �e2 and u=u0
	W /2, so

vt = u0/�u0
2 + �2�,vb = 0. �G19�

From Eqs. �G10�–�G12�, we can obtain

K = − �2/�u0
2 + �2�2, �G20�

	m = 0, �m = − �/�u0
2 + �2� . �G21�

Additionally, we have

	n = a cos2��/2� + b sin � + c2 sin��/2� = 0, �G22�

	g = !12/!2 = u0/�u0
2 + �2� , �G23�

�g = b cos� + �c − a��sin ��/2 = �/�u0
2 + �2� , �G24�

in terms of the definition of normal curvature, geodesic cur-
vature and geodesic torsion. From the above equations
�G19�–�G24�, we find that among the boundary conditions
�35�–�38�, only Eq. �36� is nontrivial, which gives Eq. �46�.
Similarly, we obtain the same equation as Eq. �46� when �
=� /2 for ��0.

The average energy per area �48� can be obtained from
F /A, where A is the area of the twisted ribbon and F is the
free energy �32�. The calculation is straightforward with c0
=0, Eqs. �G10�, �G12�, and �G14�, and

dA = �u2 + �2du d� , �G25�

ds = �u0
2 + �2d� . �G26�
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